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PREFACE 

The purpose of t h i s  repor t  is t o  present t h e  r e s u l t s  of t h e  Saturn I B  separation 

cont ro l  ana lys i s  f o r  t h e  revised 200,000 l b  t n r u s t  H-1 engine and t o  update t h e  

previous separat ion repor t  ( reference 1) using the latest aerodynamic parameters . 
The e f f e c t s  of a 50 and 100 per cent dispersion i n  t h e  aerodynamic parameters are 

included, as requested i n  I t e m  4.4 of t h e  act ion items of t h e  S-IVB Vehicle 

Dynamics and Control Working Group Meeting reported i n  MSFC Technical Direction 

No. I-V-S-IVB-TD-64-12 dated March 17, 1964 (reference 2)  . 5 

This r epor t  i s  provided t o  p a r t i a l l y  f u l f i l l  t he  requirements of Contract Number 

NAS-7-101 as noted i n  Douglas Aircraf t  Company Report SM-41410; Data Submittal 

Document Saturn S-IVB System, I t e m  3.8, dated March 1962. 
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ABSTRACT 

This r epor t ,  using t h e  latest aerodynamic, engine, and stage sequencing data 

ava i lab le ,  inves t iga tes  the con t ro l l ab i l i t y  of t h e  Saturn S-IVB/IB stage during 

separat ion from the S-IB stage. Post separation a t t i t u d e  t r a n s i e n t s  and engine 

def lec t ion  t r a n s i e n t s  are presented f o r  a nominal condition using parameters 

which are s l i g h t l y  higher than t h e  90 per cent confidence l e v e l ,  3u values 

obtained from Saturn S-I f l i g h t  data. 

presented f o r  individual  and combined dispers ions of these parameters. 

results ind ica te  the  cont ro l  of t he  S-IVB s tage can be maintained under nominal 

conditions and the system is  stable. 

persions i n  the aerodynamic pressure. 

parameter produced a 30° a t t i t u d e  excursion. 

96O are obtained when t h i s  case is combined w i t h  t h e  minimum guaranteed th rus t  

rise curve o r  a pos i t ive  2 degree thrust misalignment, respect ively.  

analyses t o  establish p robab i l i t i e s  f o r  these worse case excursions are required 

t o  determine a l i m i t  f o r  t h e  a t t i t u d e  rate which can be used i n  t he  emergency 

detect ion system. 

Changes i n  these t r ans i en t  responses are 

The 

Maximum a t t i t u d e s  are produced by dis- 

A.100 per cent dispersion i n  t h i s  

Att i tude excursions of 50° and 

Further 

DESCRIPTORS 

S-IVB/IB 

SEPARATION 

CONTROLLABILITY 

ATTITUDE 
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1. INTRODUCTION 

~ 

Saturn IB/S-IVB stage separation is possibly the  most c r i t i c a l  pa r t  of S-IVB 

stage f l i g h t .  As a r e s u l t  of t h e  recent uprating of the  H-1 engine's t h r u s t  

from 188,000 pounds t o  200,000 pounds, and newer aerodynamic data, t h e  previaus 

separation report  (reference 1) can no longer be used as an accurate reference. 

1 

It is  the primary purpose of t h i s  report t o  discuse the  r e s u l t s  of t he  con- 

t r o l l a b i l i t y  analysis  made fo r  the  Saturn I B  configuration using the  latest 

da t a  f o r  t h r u s t  buildup curves , aerodynamic coef f ic ien ts  , dynamic pressure , 
ullage engine configuration, and separation sequencing. 

r e s u l t s  are based on "nominal" parameter values which r e s u l t  i n  s m a l l  a t t i t u d e  

excursions. 

problems some of t h e  more s ign i f i can t  parameters such as t h r u s t  bu i ld  up were 

invest igated over a three sigma range. 

aerodynamic dispersions of f i f t y  per cent and one hundred per cent required 

by reference 2; t h e  dyneunic pressure w a s  found t o  be the  most su i t ab le  parameter 

The main body of the  

However, i n  order t o  completely cover t h e  range of separat ion 

I n  order t o  inves t iga te  t he  required 

t o  vary. 

2. ANALYSIS METHOD AND PARAMETERS 

The maJor p a r t  of t h i s  ana lys i s  w88 made by d i g i t a l  simulation of  t h e  S-IVB 

configuration. 

dynamics only. 

tude feedback. 

with rate and pos i t ion  limits. 

body equations. 

check t h e  r e su l t s .  

The dynamic equations used i n  the simulation include r i g i d  body 

The autopi lot  included an a t t i t u d e  and rate of change of at t i-  

The hydraulic system was approximately by a first order  servo 

No sloshing e f f e c t s  were included i n  t he  r i g i d  

An snalog simulation of the iden t i ca l  problem was made t o  

1 



Figure 2 i s  a drawing o f t h e  second stage configuration which includes the  S-IVB 

stage, t h e  LEM, and the  Service Module. 

t h r u s t  t i m e  h i s to ry  taken from reference 3, 
i 

Figure 3 shows the latest 5-2 Engine 

Also included i n  figure 3 i s  the 

2 referenced t o  the  nominal value of 65.5 kg/m 

given i n  reference 5. 

f o r  q a t  separation tha t  was  
f 

i n  S-IVB/IB separation s tudies ,  The analysis w a s  extended by parameterizing 

these conditions i n  order t o  give a more complete p ic ture  of the Separation. 

The Appendix presents  a s t a t i s t i c a l  analysis of i n i t i a l  conditions experienced 

on t he  S-IV stage at separation for Saturn I fl ights,  and an extrapolat ion of 

t h i s  data t o  the S-IVB/IB stage. This analysis shows that the nominal 3 rigma 

values ured i n  th i s  study for eo and e ,  are slightly conservative. 

2 



Also included i n  Table 3 i s  a l i s t  o f t h e  nominal values used f o r  t h e  engine 

gimbal angle l i m i t ,  t h e  engine gimbal rate l i m i t  ( reference '71, and t h e  assumed 

t h r u s t  misalignment e r ror .  

due t o  t h r u s t  vector misalignment, missile center  of  gravi ty  o f f s e t ,  t h r u s t  

o f f s e t ,  and gimbal offset ,  

The thrust  misalignment e r r o r  includes t h e  e r r o r s  

3 ,  RESULTS 

The separat ion t r ans i en t  response data given i n  f igures  7 through 17 r e f l e c t  

va r i a t ions  i n  dynamic pressure,  thrust  buildup cha rac t e r i s t i c s ,  ul lage motor 

conditions,  th rus t  vector misalignment, and i n i t i a l  a t t i t u d e  conditions. Two 

types of  r e s u l t s  are given, ac tua l  t ransient  response, and response t rend 

summaries. The nominal i n i t i a l  conditions a re  indicated i n  Table 3 ,  

Figure 7 shows a t t i t u d e  excursion versus t i m e  from separat ion f o r  t h e  "nominal" 

case, This  response i s  compared t o  a separation t r ans i en t  using t h e  same 

i n i t i a l  conditions,  but  w i t h  one ullage engine out,  The pa r t i cu la r  ullage motor 

out i s  posit ioned so t h a t  a maximum disturbing moment i s  produced by the  re- 

maining notors  thereby r e su l t i ng  i n  an a t t i t u d e  excursion of 2.0 degrees g rea t e r  

than t h e  nominal case,  The engine deflection fo r  t h i s  a t t i t u d e  excursion i s  

shown i n  f igure  8, 

The e f f e c t  of dynanic pressure on maximum a t t i t u d e  excursion at separation has 

been p lo t t ed  i n  f igure  9,  I n i t i a l  a t t i tude  rates of one degree per  second and 

zero degrees per  second were used, 

higher a t t i t u d e  rate, shows considerably l a rge r  a t t i t u d e  excursions and i s  more 

The upper curve, which r e su l t ed  from the  

sens i t i ve  t o  a change i n  i n i t i a l  dynamic pressure than t h e  lower curve, As much 

as 30 degrees of a t t i t u d e  angle i s  obtained f o r  a dynamic pressure of twice the  

3 



nominal" value. Although t h i s  i s  a large a t t i tude excursion, t h e  probabi l i ty  It 

t h a t  these  i n i t i a l  conditions w i l l  occur, based on the  s t a t i s t i c a l  study i n  

t h e  Appendix, i s  small. 

Figure 10 shows t h e  e f f e c t  of t h e  separation sequencing on maximum a t t i t u d e  

excursion. The t h r u s t  buildup curve of f igure  3 was used, and the t i m e  from 

separat ion t o  engine start was parameterized. 

dynamic pressure,  sequencing changes have almost no e f f e c t  on attitude excursion. 

However, t he  a t t i t u d e  excursion i s  quite s ens i t i ve  t o  coast  t i m e  f o r  cases which 

have one hundred per cent excursion on dynamic pressure.  

It i s  seen t h a t  with nominal 

Figure 11 shows a t t i t u d e  excursion versus i n i t i a l  angle of a t tack  f o r  three sets 

of i n i t i a l  conditions. 

Figure 12 i s  comparable t o  f igure  11 except t he  maximum a t t i t u d e  excursion i s  

p lo t ted  versus i n i t i a l  a t t i t u d e  p i t ch  rate f o r  an i n i t i a l  a t t i t u d e  angle of 

1 degree and a parameterized angle of a t tack.  

Figure 13 represents  the  e f f e c t s  o f  changing gimbal l i m i t s  on a t t i t u d e  excursion 

and on t o t a l  c o n t r o l l a b i l i t y  and for three values of engine gimbal l i m i t  rate 

( = 5 ,  10, and 1 5  degrees/sec. ) 

Because t h e  t h r u s t  build-up curve has a very s ign i f i can t  e f f e c t  on the  a t t i t u d e  

excursion experienced during separation, it i s  necessary t o  inves t iga te  the  

effects of both of the minimum three sigma and minimum guaranteed t h r u s t  build- 

up curves shown i n  figure 3,  

using th ree  d i f f e ren t  t h r u s t  buildup h i s to r i e s ,  

a t t i t u d e  excursion r e s u l t s  from using the  worst case t h r u s t  buildup compared 

t o  the nominal t h r u s t  buildup. 

Figure 14 shows the  r e s u l t i n g  t r a n s i e n t  response 

A s  much as 4 degrees of added 

4 



I 

Figure 15  i s  s i m i l a r  t o  f igure  14, except t h a t  one hundred per cent dispersion 

on dynamic pressure was used for f igure  15. While t h e  vehicle  remains s t ab le  

( t r a n s i e n t  responses rapidly converge) it is evident that t h e  a t t i t u d e  excursion 

increases  as t h e  dynamic pressure increases. It should be noted t h a t  an at t i -  

tude excursion of 50 degrees occurs f o r  t he  absolute worst case. This worst 

case cons i s t s  of a one hundred per cent dispersion on t h e  aerodynamic pressure 

and minimum guaranteed th rus t  buildup time his tory.  

t h e  minimum case i s  shown i n  figure 16. 

The gimbal h i s to ry  f o r  

Figure 17 i s  a summary p lo t  of a t t i t u d e  excursion versus i n i t i a l  dynamic pres- 

sure f o r  t he  th ree  dLfferent t h r u s t  buildup curves. 

Figures 18 and 19 show t h e  e f f e c t  of steady s t a t e  a t t i t u d e  cont ro l  e r r o r s  on 

the  separation t r a n s i e n t s  due t o  a 2 degree t h r u s t  misalignment r e s u l t i n g  from 

an unsymmetrical t h r u s t  and a c g offset .  Figure 18 shows t h e  r e s u l t i n g  t ran-  

s i e n t  response caused by both pos i t ive  ( t h r u s t  misalignment moment which ac t s  

i n  the  same d i rec t ion  as t h e  aerodynamic moment) and negative misalignment e r r o r s  

fo r  t he  nominal case. 

equating the  engine e r r o r  t o  an equivalent moment of the  var iab le  t h r u s t  times 

the  var iab le  cont ro l  l eve r  arm. 

These th rus t  misalignment e r r o r s  were simulated by 

The pos i t ive  t h r u s t  misalignment which gives an increase i n  t he  des t ab i l i z ing  

moment causes a s l i g h t  increase i n  the  i n i t i a l  a t t i t u d e  excursion but converges 

s l i g h t l y  faster f o r  the  nominal case seen i n  f igure  18. 

A pos i t ive  t h r u s t  misalignment e r r o r  of 2 degrees causes an a t t i t u d e  excursion 

of about 96' f o r  nominal conditions except f o r  a one hundred per cent dispersion 

on the  aerodynamic pressure. While the probabi l i ty  of these See figure 19. 

I 
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conditions occurring simultaneously i s  extremely low, t h e  r e s u l t s  must not 

be neglected. 

It i s  obvious tha t  a t t i t u d e  rates of greater than 9 degrees per second are 

experienced f o r  extreme disturbance cases such as seen i n  f igure  19. 

t h i s  rate is  s l i g h t l y  exceeded for nominal conditions except f o r  one hundred 

per cent dispers ion of dynamic pressure. 

due t o  t h e  f a c t  t h a t  a t t i t u d e  rates of 6 degrees per second may t r i g g e r  an 

emergency abort ,  (Emergency Detection System -- EDS) as out l ined i n  MSFC 

Ground Rules Document I-CO-VB-4-230 . 

Also,  

T h i s  r e s u l t s  i n  a ser ious  problem 

4. CONCLUSIONS AND RECOMMENDATIONS 

4.1 Conclusions 

a. Separation c o n t r o l l a b i l i t y  of the  Saturn I B / I V B  Stage i s  acceptable 
(15 deg 8 taken from f igu re  1 4 )  when considering the  i n i t i a l  conditions 

of 8 = 1 deg; 8 = 1 deg/sec; Q = bo;  "Slow" 3 u t h r u s t  rise; nominal 
dynamic pressure and aerodynamic normal force coe f f i c i en t ;  and no 

th rus t  misalignment. 

unacceptable f o r  t he  present guidance platform. 

A t t i t u d e  excursions grea te r  than 45 degrees are  

br  The separation a t t i t u d e  excursion using the  above conditions but w i t h  

twice the  nominal dynemic pressure or  aerodynamic normal force and the  

minimal guaranteed th rus t  r i s e  cha rac t e r i s t i c  i s  unacceptable ( 51 
deg 8 )  w i t h  the present platform (See f igure  15) . 

C. The separation a t t i t u d e  excursion using the  nominal conditions i n  
Table 1, but w i t h  twice the nominal dynamic pressure o r  aerodynamic 

normal force coef f ic ien t  and 2O t h r u s t  misalignment i s  a l s o  unacceptable 

(96 deg 8 )  with t h e  present platform (See f igure  19). 

6 



d. "he probabi l i ty  t ha t  t he  "nominal" i n i t i a l  conditions f o r  t he  a t t i t u d e  

rate and angle w i l l  occur i s  unlikely.  

e. Small deviations (from 1.25 seconds t o  1.84 seconds) i n  the  time from 
separation at which the  engine start s igna l  i s  i n i t i a t e d  causes l e s s  

than 2 degrees of addi t ional  deviation i n  t h e  a t t i t u d e  excursion (See 
figure 10) for  a system experiencing "nominal" i n i t i a l  conditions. 

4.2 Recommendations 

a. For a simultaneous application of severa l  3 sigma disturbances and 
var ia t ions ,  unacceptable a t t i t ude  deviations are experienced. Addi- 

t i o n a l  analyses should be conducted t o  e s t ab l i sh  probabi l i t i es  t o  

these  excursions and recommend design changes i f  necessary (See 

f igu re  1 9 )  . 
b. Further analysis  w i l l  be required t o  determine a value fo r  the  a t t i t u d e  

rate t o  be used as pa r t  of the emergency detect ion system. 

7 
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TABLE 1 

T - 6.4 sec.  

T - 0.4 sec. 

T - 0.1 sec.  

T 

T + 0.02 sec.  

T + 0.03 sec.  

T + 0.20 sec.  

T + 1.60 sec. 

T + 2.70 sec.  

S-IB/S-IVB SEPARATION SEQWCE 

Cutoff inboard engines 

Cutoff outboard engines 

Ignite ullage motors 

I n i t i a t e  separation cutting and retro motors 

Cutting complete 

Retromotor thrust buildup begins 

S-IVB roll control system activated 

Begin 5-2 chilldown (engine start signal) 

5-2 Thrust Buildup Begins (Init iate  engine 
gimballing) 

5-2 engine at 90% thrust 
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TABLE 2 

DYNAMIC PRESSURE VERSUS TIME FROM IGIVITION 

TIME DYNAMIC PRESSURE 

Seconds lb/ft' Ks/m2 
~~ ~~~ 

-6 

-2 

0 

2 

4 

6 

8 

18 

25 

23.8 

16.55 

13.7 

10.6 

8.15 

6.20 

4.75 

1.20 

0 

114 . 0 
79.5 

65.6 

51.0 

39.1 

29.8 

22.8 

5.77 

0 
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TABLE 3 

RANGE OF INITIAL CONDITIONS 

NOMINAL 
VALUE 

2 
I n i t i a l  Dynamic Pressure, Bo 65.6 Kg/m2 t o  131.2 Kg/m 

I n i t i a l  Angle of Attack cyo 

* I n i t i a l  Atti tude Angle, 8, 

-1' t o  +4O 

-lo t o  +lo 

-l0/scc t o  +lO/sec * I n i t i a l  Atti tude Rate io 
Thrust Vector Misalignment ($1  -2' t o  +2' 

Time of Zero Dynamic Pressure 

65.6 

+40 

+lo 

+lo /sec 

O0 

25 sec 

Nominal Engine Parameters 

Engine G i m b a l  Angle Limit OLim = 7' 

Engine G i m b a l  Rate Limit eLim = 8O/sec 

*Note: See appendix f o r  discussion of i n i t i a l  values of 8 and 8 using the  

previous Block 1, Saturn 1 f l igh ts  t o  determine s t a t i s t i c a l  values 
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MAXIMUM ATTITUDE EXCURSION VERSUS TIME FROM SEPARATION TO J-2  ENGINE 
START FOR NOMINAL CONDITIONS AND VARYING DYNAMIC PRESSURE 
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MAXIMUM ATTITUDE EXCURSION VERSUS INITIAL ANGLE OF ATTACK 
FOR NOMINAL CONDITIONS 
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MAXIMUM ATTITUDE EXCURSION VERSUS ENGINE GIMBAL ANGLE L IMIT FOR 
VARIOUS ENGINE GIMBAL RATE LIMITS USING NOMINAL IN IT IAL  CONDITIONS 
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APPENDIX 

STATISTICAL ANALYSIS OF THE SATURN IB/S-IVB STAGE SEPARATION 
ON THE INITIAL CONDITIONS FOR PITCH ANGLE AND PITCH RATE 

INTRODUCTION 

This appendix has been wr i t ten  i n  order t o  compare the  range of f i n a l  first s tage 

conditions which occurred on the  f i r s t  f ive Saturn I f l i g h t s  with t h e  i n i t i a l  S-IVB 

conditions used i n  t h i s  report .  The actual  i n i t i a l  conditions were transformed i n t o  

s t a t i s t i c a l  deviations which are a function of s t a t i s t i c a l  confidence l i m i t s .  It i s  

rea l ized  t h a t  t h e  Saturn I may r e s u l t  i n  d i f fe ren t  conditions of separation due t o  

i t s  lower t h r u s t  capabi l i ty  ( t h e  H-1 engines w i l l  be uprated from 1 8 8 ~  t o  200K 

pounds of t h r u s t  f o r  t h e  Saturn I B  f l i g h t s )  d i f f e ren t  i n e r t i a ,  and d i f fe ren t  aero- 

dynamic charac te r i s t ics .  Consequently, a method w a s  developed t o  extrapolate  Saturn 

I data t o  Saturn IB. 

The method of analysis  consisted of using the  f i n a l  conditions from the  f irst  f i v e  

Saturn I f l i g h t s .  Using these values a s t a t i s t i c a l  confidence i n t e r v a l  of 90 per 

cent w a s  chosen a r b i t r a r i l y  for  determining t h e  th ree  sigma in t e rva l  for  f i n a l  con- 

d i t i ons  of t he  Saturn I B  f i r s t  s tage,  (equivalent t o  t h e  i n i t i a l  conditions f o r  

i n i t i a l  a t t i t u d e  angle €lo and i n i t i a l  a t t i tude  rate 8, of the  S-IVB second s tage) .  

It should be noted t h a t  several  assumptions were made i n  order t o  carry out t h i s  

analysis.  These assumptions include the  following: 

a. The p i t ch  and yaw axes of t h e  vehicle are  syrnrnetrical thereby making it 
possible  t o  increase the  sample s i ze  from f ive  t o  t en  by including both 

the  p i t ch  and yaw values. 

b.’ The values were assumed t o  be dis t r ibu ted  such t h a t  t h e  ac tua l  mean value 
for  eo and bo was zero. 

c. A confidence i n t e r v a l  of 90 per cent w a s  chosen because the  sample s i ze  
of 10 w a s  considered t o  be very s m a l l .  
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PROCEDURE AND CALCULATIONS 

The following t e n  samples a,re given fo r  both eo and bo where the  p i t ch  and yaw 

samples are orthogonal and therefore  considered independent. I I 

(Sample No. 

9 
10 

0.08 

0.06 

0.03 
0.05 

0.07 
0.20 

0.05 

0.09 

0.11 

0.45 

0.01 

0.03 

0.21 

0.29 

0.09 

0.05 

0.04 

0.10 

0.10 

0.09 

The preceding samples were taken from the f l i g h t  evaluation r e s u l t s  given by 

t h a t  t h e  means of eo and eo were both zero. 

Using t h e  equations found i n  reference 9 for  determining the  ac tua l  range f o r  the 

variance corresponding t o  a given confidence l i m i t  we have: 

P 2 
< -  2 ns < x * I  = 1 - -  P 100 ,2 

or 



where: 

and 

and 

where 

I 

S - Standard deviation fo r  the  sample 

(+ = S t a t i s t i c a l  standard deviation 

n = Sample s i z e  

p = Level of significance 

X2 - Chi Squared Distribution 

p' = 100 - 1/2P 

p" = 1/2 p 

L = l  

- 
X = mean value of samples 

X, = individual samples 
Y 

F i r s t  looking a t  8 we have 

= ,/- = 0.168 'e 10 

For 90 per cent confidence p = 10 

1 then 

p' = 100 - (1/2)p = 100 - 5 = 95 

p" = (1/2)p = 5 

33 



U s i n K  t h e  tables f o r  Chi Square Distr ibut ion 

Xpt2 = 3.940 o r  Xp,  = 1.99 

Xptt2 = 18.307 

r 1 
w e  are primarily in t e re s t ed  i n  t h e  
maximum l i m i t .  

P' J 
t he re  fo re  

4 

P' 
u<- = 0.268 X 

o r  

3 ~ = 0.804 degrees f o r  9 

Using similar methods of ca lcu la t ions  and a 90 per cent confidence i n t e r v a l  t h e  

following r e s u l t s  were obtained f o r  6 . 
0 

0 degrees/sec (Assumption No. 2)  %I = 
S = 0.130 degrees/sec 

a = 0.208 degrees 
8 
e 

The th ree  sigma value f o r  t he  i n i t i a l  p i tch  rate is  0.624 degrees/second with 

90 per  cent  confidence. 

From the r e s u l t s  of these ca lcu la t ions ,  f o r  a 90 per  cent confidence in t e rva l ,  it 

i s  seen tha t  on the Saturn I-S-IV stage the three sigma value f o r  the i n i t i a l  

a t t i t u d e  angle (eo) was 0.804 degrees and the three sigma value f o r  t h e  i n i t i a l  

p i t c h  rate ( 6  ) also fo r  90 per cent confidence was 0.624 degrees per second. 

o ther  words the re  i s  only a t e n  per  cent chance of a value f a l l i n g  outs ide the 

confidence i n t e r v a l  o r  a f i v e  per cent change of a value f a l l i n g  outs ide t h e  m a x i m u m  

side of the  in te rva l .  

In  
0 
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It should a l s o  be pointed out t ha t  because the arreumption of lumping both the 

p i t ch  and yaw values together  wa8 made; both the p i t ch  and yaw axis w i l l  experience 

the samc i n i t i a l  condition of the above determined values. 

a t tacking the  problem in t h i s  manner is due t o  the extreme s e n s i t i v i t y  on the  

confidence i n t e r v a l  fo r  d i f f e ren t  sample sizes. 

The major reason for 

In order t o  show some corre la t ion  between the  end conditions of the  first f i v e  

Saturn I f l i g h t s  and the forthcoming Saturn I B  flights, the accelerat ions caused 

by aerodynamic manents and unsymmetrical t h r u s t  decay were canpared. 

A comparison of Saturn I and Saturn IB aerodynamic accelerat ions is: 

Saturn I B  

Saturn I - 
I 

T 
I 
- =  

As a r e s u l t  of 

2 0.12 x rad/sec /rad 

6.24 x 10-2/f’t-sec 2 

2 0.226 x rad/aec /rad 

8.37 x 10°2/ft-sec 

the lower T / I  r a t i o  f o r  t h e  Saturn IB, unsymmetrical t h r u s t  tai l-  

2 

off  w i l l  produce lower vehicle  accelerations and thus  lower a t t i t u d e  e r r o r s  and 

a t t i t u d e  rates at separation than on Saturn I (reference 10.) 

a t ion  due t o  aerodynamic force f o r  the Saturn IB vehicle  w i l l  a l s o  r e s u l t  i n  lower 

a t t i t u d e  disturbances at separation from winds o r  angle of a t tack  e r rors .  

it appears t h a t  the s t a t i s t i c a l  range of standard deviations f o r  i n i t i a l  a t t i t u d e  

angle and rate used f o r  S-IB/S-IVB separation are  conservative. 

The lower acceler-  

Thus, 
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